322,760 views
34 votes
34 votes
Verify each identity. 1 - cos 2x/ tan^2 x = 1 + cos 2 x

User Adhyatmik
by
3.0k points

1 Answer

24 votes
24 votes

Identity:


(1-\cos2x)/(\tan^2x)=1+\cos 2x

We can also write the given identity as :


(1-\cos 2x)/(1+\cos 2x)=\tan ^2x

From the trignometric ratio of tanx we have:


\tan x=(\sin x)/(\cos x)

and


\begin{gathered} \text{Cos}2x=1-2\sin ^2x \\ \Rightarrow1-\cos 2x=2\sin ^2x \\ \text{Cos}2x=2\cos ^2x-1 \\ \Rightarrow1+\cos 2x=2\cos ^2x \end{gathered}

So, substitute the value and simplify:


\begin{gathered} (1-\cos2x)/(1+\cos2x)=\tan ^2x \\ (2\sin^2x)/(2\cos^2x)=\tan ^2x \\ (\sin ^2x)/(\cos ^2x)=\tan ^2x \\ \text{tan}^2x=\tan ^2x \end{gathered}

So, LHS = RHS, the identity is proved

User Nogoseke
by
3.5k points