ok so
same as normal matrix except you have a line in place of the equals
just take the coefients and use gausian ellimination
-1x-3y=-17 and
2x-6y-26 translates to
![\left[\begin{array}{ccc}-1&-3&|-17\\2&-6&|-26\end{array}\right]](https://img.qammunity.org/2017/formulas/mathematics/high-school/4wynlcot5s6ky3dn7qbekaedd5qvwikpsp.png)
now use gausian elimination
multiply top row by 2 and add to 2nd collumn
![\left[\begin{array}{ccc}-1&-3&|-17\\0&-12&|-60\end{array}\right]](https://img.qammunity.org/2017/formulas/mathematics/high-school/hq94eqlc17agslqifjncwnakc6bowp7ydo.png)
divide bottom row by -12
![\left[\begin{array}{ccc}-1&-3&|-17\\0&1&|5\end{array}\right]](https://img.qammunity.org/2017/formulas/mathematics/high-school/aj4un4wncjp974vhie4myini06ts2gtmw2.png)
now multiply last row by 3 and add to first row
![\left[\begin{array}{ccc}-1&0&|-2\\0&1&|5\end{array}\right]](https://img.qammunity.org/2017/formulas/mathematics/high-school/ulx104ykt6u67nr38dbi43s4xxs64tjvm0.png)
times top row by -1
![\left[\begin{array}{ccc}1&0&|2\\0&1&|5\end{array}\right]](https://img.qammunity.org/2017/formulas/mathematics/high-school/7u36xa79pgtlatavixnlv05gh9jj3bzyd1.png)
x=2
y=5