Answer:
a. -4/3
b. -3(6x^2 +5)/(4(2x^3 +5x +4)^(7/4))
Explanation:
a.
The function can be evaluated at x = -1/2:
(4(-1/2) -2)/(8(-1/2)^2 +1) = (-2 -2)/(8/4 +1) = -4/3
The limit at x = -1/2 is -4/3.
__
b.
The power rule and chain rule will get you there:
d(u^n) = nu^(n-1)·du
__
g(x) = (2x^3 +5x +4)^(-3/4)
g'(x) = (-3/4)(2x^3 +5x +4)^(-7/4)(6x^2 +5)
or ...
g'(x) = -3(6x^2 +5)/(4(2x^3 +5x +4)^(7/4))