66.9k views
4 votes
4x+y=8 and x+3y=8 graphed

User Jdehlin
by
8.9k points

1 Answer

5 votes

standard \ linear \ equation\ :\\\\y=ax+b\\\\ \begin{cases} 4x+y=8\ \ |\ subtract\ 4x\ to\ both\ sides\\ x+3y=8 \ \ |\ subtract\ x\ to\ both\ sides \end{cases}\\\\\begin{cases} y=-4x+8 \\ 3y=-x+8\ \ | \ divide \ each \ term \ by \ 3 \end{cases}


\begin{cases} y=-4x+8 \\ y=-(1)/(3)x+(8)/(3) \end{cases}\\\\y=-4x+8\\ To \ find \ the \ x-axis \ intersection \ point, \\set \ y \ equal \ to \ zero \ and \ solve \ for \ x : \\ \\y=0 \ \to 0=-4x+8\\\\4x=8 \ \ | \ divide \ both \ sides\ by\ 4 \\\\x=2\\\\ point : \ \ (2,0)


To \ find \ the \ y-axis \ intersection \ point, \\set \ x \ equal \ to \ zero \ and \ solve \ for \ y : \\ \\x=0 \ \to y=-4 \cdot 0+8\\ y=8 \\ point: \ \ (0,8)



y=-(1)/(3)x+(8)/(3)\\\\ \ the \ x-axis \ intersection \ point \\ \\y=0 \ \to 0=-(1)/(3)x+(8)/(3)\\ (1)/(3)x=(8)/(3) \ \ | \ multiply\ both\ sides\ by\ 3 \\\\x=8 \\\\point: \ \ (8,0)


the \ y-axis \ intersection \ point \\ \\x=0 \ \to y=-(1)/(3) \cdot 0+(8)/(3) \\ y=(8)/(3) \\ point : \ \ (0,(8)/(3))



Answer :\\\\ \begin{cases} y=-4x+8 \ \ | \ multiply \ each \ term \ by \ (-3) \\ 3y=-x+8 \end{cases}\\\begin{cases} -3y=12x-24 \\ 3y=-x+8 \end{cases}\\+-------\\0=11x-16\\11x=16\ \ | \ divide \ both \ sides\ by\ 11\\x=(16)/(11)


y=-4 \cdot (16)/(11)+8 \\ y=- ( 64)/(11)+(88)/(11)\\y= (24)/(11)\\\\\begin{cases} x=(16)/(11) \\ y=(24)/(11) \end{cases}


4x+y=8 and x+3y=8 graphed-example-1
User Skquark
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories