337,862 views
20 votes
20 votes
Consider the function f(x) = -2x^3 + 36x^2- 120x + 9.f(x) has an inflection point at x = Cwhere C is ___

User Rohit Falor
by
2.8k points

1 Answer

26 votes
26 votes

Given:


-2x^3+36x^2-120x+9

Find- Inflection point.

Sol:

For inflection point


\begin{gathered} f^(\prime)^(\prime)(c)=0 \\ \\ x=c \end{gathered}

Derivative of function.


\begin{gathered} f(x)=-2x^3+36x^2-120x+9 \\ \\ f^(\prime)(x)=-6x^2+72x-120 \\ \\ f^(\prime)^(\prime)(x)=-12x+72 \end{gathered}

Check for zero then:


\begin{gathered} f^(\prime)^(\prime)(x)=0 \\ \\ -12x+72=0 \\ \\ -12x=-72 \\ \\ x=(-72)/(-12) \\ \\ x=6 \end{gathered}

The inflection point is x=c

so c is 6


\begin{gathered} x=c \\ \\ x=6 \\ \\ c=6 \end{gathered}

User Rajorshi
by
3.2k points