25.4k views
5 votes
Use the quadratic formula to solve 9x^2+6x-17=0

A.X=-1,-5
B.X=-1+3√2 /3
C.X=3+√14 /10
D.X=-6+√31 /2

User Dangowans
by
8.1k points

1 Answer

6 votes

Answer:

option (b) is correct.


x_1=(-1+3√(2))/(3),\:x_2=-(1+3√(2))/(3)

Explanation:

Given equation
9x^2+6x-17=0

We have to solve the given quadratic equation using quadratic formula.

For the given standard quadratic equation
ax^2+bx+c=0

Quadratic formula is given as
x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)

Comparing with given quadratic equation, we have a = 9, b = 6 and c = -17

Substitute in quadratic formula, we have,


x_(1,\:2)=(-6\pm √(6^2-4\cdot \:9\left(-17\right)))/(2\cdot \:9)

Simplify , we have
√(6^2+4\cdot \:9\cdot \:17)=√(648)

we get,


x_(1,\:2)=(-6\pm√(648))/(2\cdot \:9)

Also,
√(648) =√(3^4\cdot \:2^3)=18√(2)

we have,


x_(1,\:2)=(-6\pm 18√(2))/(2\cdot \:9)

Thus, seperating both facotors, we have,


x_(1)=(-6\+18√(2))/(2\cdot \:9) and
x_(2)=(-6\-18√(2))/(2\cdot \:9)

Simplify, both we get,


x_1=(-1+3√(2))/(3),\:x_2=-(1+3√(2))/(3)

Thus, option (b) is correct.

User Joshua Stewardson
by
8.0k points