Solution :
![\color{plum}\bold{x \tt \: = 67}](https://img.qammunity.org/2022/formulas/mathematics/college/5etsencjn00r4228llnsnddas11yykjm14.png)
Steps to derive the correct solution :
∠63° and ∠(2x-17)° are a linear pair, so their sum will be equal to 180°.
Which means :
![= 63 + 2x - 17 = 180](https://img.qammunity.org/2022/formulas/mathematics/college/ff5xzmbwwq2fq6i59ujcfwgz5661usr79z.png)
![= 63 + 2x = 180 + 17](https://img.qammunity.org/2022/formulas/mathematics/college/gb6w5geetweo95q0xcxd082km42vri19o2.png)
![= 63 + 2x = 197](https://img.qammunity.org/2022/formulas/mathematics/college/jsfot6o9jyzmecs5z24a2v2spqlq3kzt62.png)
![= 2x = 197 - 63](https://img.qammunity.org/2022/formulas/mathematics/college/8hbd68cy4a222vxil1ktd581x47vdu6o92.png)
![= 2x = 134](https://img.qammunity.org/2022/formulas/mathematics/college/yn9juj5izrd9ftyey832n9lmopuq54pqzj.png)
![= x = 67](https://img.qammunity.org/2022/formulas/mathematics/college/axrdoe3mgbb82nnxxgyoiyf68kr1k3hq2z.png)
Let us place 67 in the place of x and see if the substitution is equivalent to 180° :
![= 63 + 2 * 67 - 17 = 180](https://img.qammunity.org/2022/formulas/mathematics/college/mwjpm8uosbd72x58qiujtu9u7gftnymbqg.png)
![= 63 + 134 - 17 = 180](https://img.qammunity.org/2022/formulas/mathematics/college/nyjrxb844kj0a5gpsfn4imlthyo3me663d.png)
![= 63 + 117 = 180](https://img.qammunity.org/2022/formulas/mathematics/college/632pbvzon2dya3rhdok0msloqzxsnz1thg.png)
![= 180 = 180](https://img.qammunity.org/2022/formulas/mathematics/college/er18hhshqe69a6u2sp3d0a5ouwuqtxtx5u.png)
Thus, the value of x we found out is correct.
Therefore, x = 67