52.5k views
0 votes
Find an equation of the line. Write the equation in function notation. Through (6,-1); perpendicular to 9y=x-18

User Zbdiablo
by
8.5k points

1 Answer

4 votes
The first step is to find the slope of the given line by putting its equation in the form y = mx + b.
9y = x - 18
Dividing both sides by 9, gives:
y = (x/9) - 2
The slope of the given line is therefore 1/9.
Let the slope of the perpendicular line be m.
The product of the two slopes must equal -1 for the lines to be perpendicular.

m*(1)/(9)=-1
Therefore m = -9.
At this stage the equation of the required line is y = -9x + b.
Now we need to find the value of b.
Plugging the given values of a point on the line (6, -1) into the equation gives:
-1 = -54 + b; from which b = 53.
The required equation for the line is:
f(x) = -9x + 53.
User Maureen Moore
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories