Answer
B. -8 - 13.9i
Step-by-step explanation
z = 1 + i√3
Given that z has a modulus of 2 and an argument of 60, then,
z⁴ = (1 + i√3)⁴ Note: √3 = 1.732, i² = 1
Using Pascal triangle
z⁴ = (1 + 1.732I)⁴ = 1(1)⁴(1.732I)⁰ + 4(1)³(1.732I)¹ + 6(1)²(1.732I)² + 4(1)¹(1.732I)³ +1(1)⁰(1.732I)⁴
z⁴ = 1 + 4(1.732i) - 6(3) - 4(5.196i) + 9
z⁴ = 1 + 6.928i - 18 - 20.784i + 9
Grouping the terms, we have
z⁴ = 1 - 18 + 9 + 6.928i - 20.784i
z⁴ = -8 - 13.9i