174k views
17 votes
Please help me prove the identity​

Please help me prove the identity​-example-1
User Bgs
by
7.5k points

1 Answer

12 votes

Answer:


(1-\tan x )/(1+\cot x)

Explanation:

Let
(\sin 2x+\cos 2x-1)/(\sin 2x+\cos 2x + 1), we proceed to prove the given identity by trigonometric and algebraic means:

1)
(\sin 2x+\cos 2x-1)/(\sin 2x+\cos 2x + 1) Given

2)
(2\cdot \sin x \cdot \cos x +\cos ^(2)x - \sin^(2)x-1)/(2\cdot \sin x \cdot \cos x +\cos ^(2)x - \sin^(2)x+1)
\sin 2x = 2\cdot \sin x \cdot \cos x/
\cos 2x = \cos^(2)x - \sin^(2)x

3)
(2\cdot \sin x \cdot \cos x -\sin^(2)x-(1-\cos^(2)x))/(2\cdot \sin x\cdot \cos x +\cos^(2)x+(1-\sin^(2)x)) Commutative, associative and distributive properties/
-a = (-1)\cdot a

4)
(2\cdot \sin x \cdot \cos x -2\cdot \sin^(2)x)/(2\cdot \sin x \cdot \cos x +2\cdot \cos^(2)x)
\sin^(2)x + \cos^(2)x = 1

5)
((2\cdot \sin x)\cdot (\cos x-\sin x))/((2\cdot \cos x)\cdot (\sin x +\cos x)) Distributive and associative properties.

6)
(\sin x\cdot (\cos x-\sin x))/(\cos x\cdot (\sin x +\cos x)) Existence of multiplicative inverse/Commutative and modulative properties.

7)
((\cos x -\sin x)/(\cos x) )/((\sin x + \cos x)/(\sin x) )
((x)/(y) )/((w)/(z) ) = (x\cdot z)/(y\cdot w)

8)
((\cos x)/(\cos x)-(\sin x)/(\cos x) )/((\sin x)/(\sin x)+(\cos x)/(\sin x) )
(x+y)/(w) = (x)/(w) + (y)/(w)

9)
(1-\tan x )/(1+\cot x) Existence of multiplicative inverse/
\tan x = (\sin x)/(\cos x)/
\cot x = (\cos x)/(\sin x)/Result

User Ruxi
by
7.2k points