33.1k views
3 votes
Integrate
e^(4x)\sqrt{1+e^(2x) } dx please show work so i can learn

User Alan Omar
by
7.4k points

1 Answer

3 votes

Answer:


(\frac{(1+e^(2x)) ^{(5)/(2) } }{{5}} + \frac{(1+e^(2x) )^{(3)/(2) } }{{3}} )+C

Explanation:

Step(i):-

Given that the function

f(x) =
e^(4x) \sqrt{1+e^(2x) }

Now integrating on both sides, we get


\int\limits{f(x)} \, dx = \int\limits{e^(4x) \sqrt{1+e^(2x) } dx

=
\int\limits{e^(2x) e^(2x) \sqrt{1+e^(2x) } dx

Step(ii):-

Let
1 + e^(2x) = t


e^(2x) = t -1


2e^(2x)dx = d t


e^(2x)dx = (1)/(2) d t

=
\int\limits{( \sqrt{1+e^(2x) }) e^(2x) e^(2x) dx

=
\int\limits {√(t)(t-1)(1)/(2) dt }

=
(1)/(2) \int\limits {√(t) (t) -√(t) ) dt }

=
(1)/(2) \int\limits {(t^{(1)/(2) } t^(1) +t^{(1)/(2) } ) } \, dx


= (1)/(2) \int\limits {(t^{(3)/(2) } +t^{(1)/(2) } ) } \, dx

=
(1)/(2) (\frac{t^{(3)/(2) +1} }{(3)/(2)+1 } + \frac{t^{(1)/(2) +1} }{(1)/(2)+1 } )+C

=
(1)/(2) (\frac{t^{(3)/(2) +1} }{(5)/(2) } + \frac{t^{(1)/(2) +1} }{(3)/(2) } )+C

=
(1)/(2) (\frac{t^{(5)/(2) } }{(5)/(2) } + \frac{t^{(3)/(2) } }{(3)/(2) } )+C

=
(\frac{(1+e^(2x)) ^{(5)/(2) } }{{5}} + \frac{(1+e^(2x) )^{(3)/(2) } }{{3}} )+C

Final answer:-

=
(\frac{(1+e^(2x)) ^{(5)/(2) } }{{5}} + \frac{(1+e^(2x) )^{(3)/(2) } }{{3}} )+C

User Mrzool
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories