49,628 views
45 votes
45 votes
AV10С3BFind sin(2-ZBAC).

User Goodm
by
2.6k points

1 Answer

10 votes
10 votes

Trigonometric ratios for angle BAC:


\begin{gathered} \text{sin}\angle\text{BAC}=\frac{\text{opposite}}{\text{hypotenuse}}=\frac{3}{\sqrt[]{10}} \\ \\ \text{cos}\angle\text{BAC}=\frac{\text{adjacent}}{\text{hypotenuse}}=\frac{1}{\sqrt[]{10}} \end{gathered}

Use the trigonometric ratios above to solve sin (2BAC):


\begin{gathered} \sin 2x=2\cdot\sin x\cdot\cos x \\ \\ \sin (2\cdot\angle\text{BAC)}=2\cdot\sin \angle BAC\cdot\cos \angle BAC \\ \\ \sin (2\cdot\angle\text{BAC)}=2\cdot\frac{3}{\sqrt[]{10}}\cdot\frac{1}{\sqrt[]{10}} \\ \\ \sin (2\cdot\angle\text{BAC)}=\frac{2\cdot3\cdot1}{(\sqrt[]{10})^2} \\ \\ \sin (2\cdot\angle\text{BAC)}=(6)/(10) \\ \\ \sin (2\cdot\angle\text{BAC)}=(3)/(5) \end{gathered}

User Jibysthomas
by
3.1k points