147k views
0 votes
You place a cup of 200oF coffee on a table in a room that is 67oF, and 10 minutes later, it is 195oF. Approximately how long will it be before the coffee is 180oF? Use Newton's law of cooling:

2 Answers

6 votes
The answer is 43 minutes APEXX
User Vivekkupadhyay
by
8.1k points
3 votes

Answer:

After 50.4 min.

Explanation:

Newton's law of cooling-


T(t)=t_a+(t_0-t_a)e^(-kt)

where,


t_0 = the initial temp. = 200° F

k = 0.1947,


T(t) = 180° F


t_a = 67° F

Putting the values,


\Rightarrow 180=67+(200-67)e^(-0.1947\cdot t)


\Rightarrow 180-67=(200-67)e^(-0.1947\cdot t)


\Rightarrow (200-67)e^(-0.1947\cdot t)=180-67


\Rightarrow 133e^(-0.1947\cdot t)=113


\Rightarrow e^(-0.1947\cdot t)=(113)/(133)


\Rightarrow \ln e^(-0.1947\cdot t)=\ln (113)/(133)


\Rightarrow -0.1947\cdot t=\ln (113)/(133)


\Rightarrow t=(\ln (113)/(133))/(-0.1947)=0.84\ h=50.4\ min

User Leonel Machava
by
8.2k points