59.0k views
5 votes
Determinate the minimal value of the module of vector:


\vec{u}=(m-1)\vec{i}+(2+m)\vec{j}

User Gisle
by
9.0k points

2 Answers

4 votes

\text{We know that }
||u(m)||= √((m-1)^2+(2+m)^2)


\text{If we want the minimum of this},
\text{we can take the minimum of the square}


√(f(x)) \ \text{and} \ f(x) \ \text{have the same minimum}


(||u(m)||^2) '=2(m-1)+2(2+m)


\text{Now set it, so it will equal to zero}


2(m-1)+2(2+m)=0


m= (-1)/(2)
\text{Solution}


\text{The particular value for m minimizes} ∥u(m)∥,
\text{using the second derivative test.}


\text{Now plug m back into the norm. }


||u(-12)||= (3)/(2) √(2)

≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡


\text{Proof that} √(f(x)) \ \text{and} \ f(x) \ \text{have the same extrema}


√((f'(x))')= (f'(x))/(2√(f(x)))=0


f'(x)=0\ \text{because both have the same solution.}


\text{It's minimized when the velocity is perpendicular to the position. }.
\text{That makes sense cause rotational motion has a constant}
\text{ length throughout its motion}
\text{Whereas if you don't have a locally circular motion,}
\text{you must either be moving further or closer away so }
\text{you're no at a local min or max.}


(d)/(dm)(u*u)=0


u'*u=0
User Stephen Hines
by
8.8k points
5 votes

\displaystyle Note~that~|\overrightarrow{u}|= √((m-1)^2+(2+m)^2)=√(2m^2+2m+5). \\ \\ Thus~the~minmal~value~of~|\overrightarrow{u}|~holds~when~2m^2+2m+5~is~ \\ \\minimum. \\ \\ 2m^2+2m+5= (4m^2+4m+10)/(2)= ((2m+1)^2+9)/(2) \ge (0+9)/(2)= (9)/(2). \\ \\ Hence,~|\overrightarrow{u}|_(min)= \sqrt{(9)/(2)}= (3 √(2))/(2)~for~2m+1=0 \Leftrightarrow m= -(1)/(2).
User Mrsauravsahu
by
8.1k points