Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2015/formulas/mathematics/high-school/2l408t9ucayob5xkw5dsfcngxuati592ud.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2017/formulas/mathematics/high-school/9ehx61og91afh6dw2sn9c4cja5zo84z2d5.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = (d)/(dx)[6x] - (d)/(dx)[8]](https://img.qammunity.org/2017/formulas/mathematics/high-school/26drb0h7qfpkuigzwbsls6vhskl2mfy18u.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle y' = 6 (d)/(dx)[x] - (d)/(dx)[8]](https://img.qammunity.org/2017/formulas/mathematics/high-school/2q8qe3dbvbzd4h3ffx0v8gg2q5gi50bzj3.png)
- Basic Power Rule:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation