56,398 views
41 votes
41 votes
Write the equation for the hyperbola (below) in standard form and identify the vertices, foci and equations for the asymptotes. To earn full credit please share all steps and calculations. x^2+2x-100y^2-1000y+2401

Write the equation for the hyperbola (below) in standard form and identify the vertices-example-1
User Jiy
by
2.7k points

1 Answer

27 votes
27 votes
Answer:
((y+5)^2)/(7^2)-((x+1)^2)/(70^2)=1
\text{Foci = (}-1,\text{ -7}\sqrt[]{101}-5)\text{ and (}-1,\text{ -5+7}\sqrt[]{101})

The vertex = (-1, -12) and (-1, 2)


\begin{gathered} \text{First asymptote: }y=-(x+51)/(10) \\ \text{Second asymptote: }y=(x-49)/(10) \end{gathered}Step-by-step explanation:

The given equation of the hyperbola is:


x^2+2x-100y^2-1000y+2401

The standard form of the equation of a hyperbola is of the form


(\mleft(y-k\mright)^2)/(b^2)-((x-h)^2)/(a^2)=1

where (h, k) is the center of the hyperbola

The vertex = (h, k-b) and (h, k+b)

The given equation can be re-written as:


\begin{gathered} x^2+2x-100(y^2+10y)+2401=0 \\ x^2+2x-100(y^2+10y)=-2401 \\ (x^2+2x+1)-100(y^2+10y+25)=-2401+1-25(100) \\ (x^2+2x+1)-100(y^2+10y+25)=-4900 \\ 100(y^2+10y+25)-(x^2+2x+1)=4900 \end{gathered}

This can be further simplified into:


\begin{gathered} 100(y+5)^2-(x+1)^2=4900 \\ \text{Divide through by 100} \\ (y+5)^2-((x+1)^2)/(100)=(4900)/(100) \\ (y+5)^2-((x+1)^2)/(100)=49 \\ ((y+5)^2)/(49)-((x+1)^2)/(4900)=1 \\ ((y+5)^2)/(7^2)-((x+1)^2)/(70^2)=1 \end{gathered}

Therefore, the standard form of the given parabola equation is:


((y+5)^2)/(7^2)-((x+1)^2)/(70^2)=1

The center (h, k) = (-1, -5)

(a, b) = (70, 7)

The vertex = (-1, -5-7) and (-1, -5+7)

The vertex = (-1, -12) and (-1, 2)

The foci = (h, k-c) and (h, k+c)


\begin{gathered} c=\sqrt[]{a^2+b^2} \\ c=\sqrt[]{70^2+7^2} \\ c=7\sqrt[]{101} \end{gathered}
\text{Foci = (}-1,\text{ -7}\sqrt[]{101}-5)\text{ and (}-1,\text{ -5+7}\sqrt[]{101})

The first asymptote:


\begin{gathered} y=-(b)/(a)(x-h)+k \\ y=-(x+51)/(10) \\ \end{gathered}

Second asymptote


\begin{gathered} y=(b)/(a)(x-h)+k \\ y=(x-49)/(10) \end{gathered}

User Raj Kumar N
by
2.5k points