172k views
2 votes
BC Calculus

If dy / dx = (2x - 1)y , y(1) = e, find y(2).

User Wpgreenway
by
8.9k points

1 Answer

4 votes

Answer:


\displaystyle y(2) = e^3

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Algebra I

  • Functions
  • Function Notation
  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Algebra II

  • Natural Logarithms ln and Euler's number e

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration:
\displaystyle \int {(1)/(u)} \, dx = ln|u| + C

Step-by-step explanation:

*Note:

When solving differential equations in slope fields, disregard the integration constant C for variable y.

Step 1: Define


\displaystyle (dy)/(dx) = (2x - 1)y


\displaystyle y(1) = e

Step 2: Rewrite

Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.

  1. [Separation of Variables] Rewrite Leibniz Notation:
    \displaystyle dy = (2x - 1)y \ dx
  2. [Separation of Variables] Isolate y's together:
    \displaystyle (1)/(y) \ dy = (2x - 1) \ dx

Step 3: Find General Solution

  1. [Differential] Integrate both sides:
    \displaystyle \int {(1)/(y)} \, dy = \int {(2x - 1)} \, dx
  2. [dy Integral] Integrate [Logarithmic Integration]:
    \displaystyle ln|y| = \int {(2x - 1)} \, dx
  3. [dx Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle ln|y| = \int {2x} \, dx - \int {} \, dx
  4. [1st dx Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle ln|y| = 2\int {x} \, dx - \int {} \, dx
  5. [dx Integrals] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle ln|y| = 2((x^2)/(2)) - x + C
  6. Simplify:
    \displaystyle ln|y| = x^2 - x + C
  7. [Equality Property] e both sides:
    \displaystyle e^\biggln = e^\bigg{x^2 - x + C}
  8. Simplify:
    \displaystyle |y| = Ce^\bigg{x^2 - x}
  9. Rewrite:
    \displaystyle y = \pm Ce^\bigg{x^2 - x}

General Solution:
\displaystyle y = \pm Ce^\bigg{x^2 - x}

Step 4: Find Particular Solution

  1. Substitute in function values [General Solution]:
    \displaystyle e = \pm Ce^\bigg{1^2 - 1}
  2. Simplify:
    \displaystyle e = \pm C
  3. Rewrite:
    \displaystyle C = e
  4. Substitute in C [General Solution]:
    \displaystyle y = e \bigg( e^\bigg{x^2 - x} \bigg)
  5. Simplify [Exponential Rule - Multiplying]:
    \displaystyle y = e^\bigg{x^2 - x + 1}

Particular Solution:
\displaystyle y = e^\bigg{x^2 - x + 1}

Step 5: Solve

  1. Substitute in x [Particular Solution]:
    \displaystyle y(2) = e^\bigg{2^2 - 2 + 1}
  2. Simplify:
    \displaystyle y(2) = e^3

∴ our final answer is
\displaystyle y(2) = e^3.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e

User Mattdaspy
by
8.5k points