Answer:
![\displaystyle (dy)/(dx) = -2x \tan (x^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6uyun8bukiumssifvawge5bh2twkxrnnq0.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
Step 1: Define
Identify
![\displaystyle y = \ln (\cos x^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2nzsx9o2od8jn7pmejkysiigw6xupyludu.png)
Step 2: Differentiate
- Logarithmic Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = ((\cos x^2)')/(\cos x^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vppetg72psa2bjapsjr8fugnev2o8v6ero.png)
- Trigonometric Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = (-\sin x^2 (x^2)')/(\cos x^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/sl11mj003tnx0sbzy2fuai3src7wvszygb.png)
- Basic Power Rule:
![\displaystyle y' = (-2x \sin x^2)/(\cos x^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/sqd69ucqsw1rqn0vpiu87doa2v1xwlq0ea.png)
- Rewrite [Trigonometric Identities]:
![\displaystyle y' = -2x \tan (x^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/d3cpup7ncxlrdo3h45hnxhhr74reh0ts8b.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation