Answer:


Explanation:
Arithmetic Sequences
The arithmetic sequences are identified because any term n is obtained by adding or subtracting a fixed number to the previous term. That number is called the common difference.
The equation to calculate the nth term of an arithmetic sequence is:

Where
an = nth term
a1 = first term
r = common difference
n = number of the term
The sum of the n terms of an arithmetic sequence is given by:

We are given the first two terms of the sequence:
a1=5, a2=8. The common difference is:
r = 8 - 5 = 3
Thus the general term of the sequence is:


The formula for the sum is:


Operating:
