156k views
13 votes
Find the domain of the function f(x)=
√(x^3-16x) . What is the least value of x in the domain?

Least Value=

User Yuwen Yan
by
4.4k points

1 Answer

12 votes

Answer:

Please check the explanation.

Explanation:

Given the function


f\left(x\right)=√(x^3-16x)

We know that the domain of the function is the set of input or arguments for which the function is real and defined.

In other words,

  • Domain refers to all the possible sets of input values on the x-axis.

Now, determine non-negative values for radicals so that we can sort out the domain values for which the function can be defined.


x^3-16x\ge 0

as x³ - 16x ≥ 0


\left(x+4\right)\left(x-4\right)\ge \:0

Thus, identifying the intervals:


-4\le \:x\le \:0\quad \mathrm{or}\quad \:x\ge \:4

Thus,

The domain of the function f(x) is:


x\left(x+4\right)\left(x-4\right)\ge \:0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-4\le \:x\le \:0\quad \mathrm{or}\quad \:x\ge \:4\:\\ \:\mathrm{Interval\:Notation:}&\:\left[-4,\:0\right]\cup \:[4,\:\infty \:)\end{bmatrix}

And the Least Value of the domain is -4.

User Al Amin Chayan
by
5.0k points