15.6k views
3 votes
Intergal of 8sin^4(x)dx

User Jocelin
by
7.3k points

1 Answer

1 vote

\int\limits8sin^4(x)dx =

Take the constant out
\int\limits a*f(x)dx=a* \int\limitsf(x)dx


= 8 \int\limits sin^4(x)dx


\int\limits sin^4(x)dx = - (cos(x)sin^3(x))/(4) = (3)/(4) \int\limits sin^2(x)dx


= 8( -(cos(x)sin^3(x))/(4)+ (3)/(4) \int\limits sin^2(x)dx)

Use the following identify :
sin^2(x) = (1-cos(2x))/(2)


= 8(- (cos(x)sin^3(x))/(4) + (3)/(4) (1)/(2)( \int\limits 1 - cos(2x)dx)


\int\limits 1dx = x


\int\limits cos(2x)dx = (1)/(2) sin(2x)

Apply the sum rule :


=8(- (cos(x)sin^3(x))/(4) + (3)/(4) (1)/(2) (x- (1)/(2) sin(2x))

Simplify :


8( (3)/(8) (x- (1)/(2) sin(2x)) - (1)/(4) sin^3(x)cos(x))

Therefore add a constant to the solution:


= 8 ( (3)/(8) (x- (1)/(2) sin(2x)) - (1)/(4) sin^3(x)cos(x))+C

hope this helps!




User Rednuht
by
8.5k points