123k views
2 votes
Sin 1 + sin 2 + sin3 .................+ sin 360 = ?

User BVtp
by
7.9k points

1 Answer

3 votes

Assuming that arcs are given in degrees, call S the following sum:

S = sin 1° + sin 2° + sin 3° + ... + sin 359° + sin 360°


Rearranging the terms, you can rewrite S as

S = [sin 1° + sin 359°] + [sin 2° + sin 358°] + ... + [sin 179° + sin 181°] + sin 180° +
+ sin 360°

S = [sin 1° + sin(360° – 1°)] + [sin 2° + sin(360° – 2°)] + ...+ [sin 179° + sin(360° – 179)°]
+ sin 180° + sin 360° (i)


But for any real k,

sin(360° – k) = – sin k


then,

S = [sin 1° – sin 1°] + [sin 2° – sin 2°] + ... + [sin 179° – sin 179°] + sin 180° + sin 360°

S = 0 + 0 + ... + 0 + 0 + 0 (... as sin 180° = sin 360° = 0)

S = 0


Each pair of terms in brackets cancel out themselves, so the sum equals zero.

sin 1° + sin 2° + sin 3° + ... + sin 359° + sin 360° = 0


I hope this helps. =)


Tags: sum summatory trigonometric trig function sine sin trigonometry

User Bruno Landowski
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.