155k views
3 votes
Check all that apply: If sin theta = 15/17 then:

a. tan theta = 15/8
b. csc theta = 17/15
c. coc theta = 17/8
d. sec theta = 17/8

1 Answer

4 votes

Answer:


a.tan(\theta)=(15)/(8)


b.csc(\theta)=(17)/(15)


d.sec(\theta)=(17)/(8)

Explanation:

The trigonometry functions on a right triangle are given by:


sin(\theta)=(opposite)/(hypotenuse)


csc(\theta)=(hypotenuse)/(opposite)


cos(\theta)=(adjacent)/(hypotenuse)


sec(\theta)=(hypotenuse)/(adjacent)


tan(\theta)=(opposite)/(adjacent)


cot(\theta)=(adjacent)/(opposite)

Let's calculate the adjacent side using pythagorean theorem:


a^2+b^2=c^2

Where:

a=opposite

b=adjacent

c=hypotenuse

The problem provides us a and c because:


sin(\theta)=(opposite)/(hypotenuse)=(15)/(17)

So:


15^2+b^2=17^2

Solving for b:


b^2=17^2-15^2\\b^2=289-225\\b^2=64\\b=√(64) \\b=8

Therefore:

a=opposite=15

b=adjacent=8

c=hypotenuse=17

Finally, let's see if the given options are correct:


a.tan(\theta)=(15)/(8)=(opposite)/(adjacent)=(15)/(8) , This is correct.


b.csc(\theta)=(17)/(15)=(adjacent)/(hypotenuse)=(17)/(15) , This is correct.


c.cot(\theta)=(17)/(8)=(adjacent)/(opposite)=(8)/(15) , This is incorrect.


d.sec(\theta)=(17)/(8)=(hypotenuse)/(adjacent)=(17)/(8) , This is correct.

Check all that apply: If sin theta = 15/17 then: a. tan theta = 15/8 b. csc theta-example-1
User Crackedcornjimmy
by
8.1k points