100k views
4 votes
Find dy/dx given y = definite integral 1/(1+t^2) . upper cosx. lower 0. show steps/explain.

2 Answers

5 votes
Hello,

If i have well understood:


image
User Moby M
by
8.6k points
6 votes

Answer:


\displaystyle y' = (-\sin x)/(1 + \cos^2 x)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 2]:
\displaystyle (d)/(dx)[\int\limits^x_a {f(t)} \, dt] = f(x)

Explanation:

Step 1: Define

Identify


\displaystyle y = \int\limits^(\cos x)_0 {(1)/(1 + t^2)} \, dt

Step 2: Differentiate

  1. Chain Rule:
    \displaystyle y' = (d)/(dx) \bigg[ \int\limits^(\cos x)_0 {(1)/(1 + t^2)} \, dt \bigg] \cdot (d)/(dx)[\cos x]
  2. Fundamental Theorem of Calculus 2:
    \displaystyle y' = (1)/(1 + \cos^2 x) \cdot (d)/(dx)[\cos x]
  3. Trigonometric Differentiation:
    \displaystyle y' = (1)/(1 + \cos^2 x) \cdot -\sin x
  4. Simplify:
    \displaystyle y' = (-\sin x)/(1 + \cos^2 x)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Youth Dream
by
7.7k points

Related questions

2 answers
15 votes
163k views
asked Nov 7, 2017 126k views
Silvio Biasiol asked Nov 7, 2017
by Silvio Biasiol
8.0k points
1 answer
4 votes
126k views