Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/5gyznprxgvpgbqhksqa20f0tupnkb4vxej.png)
Integration
Integration Rule [Fundamental Theorem of Calculus 2]:
![\displaystyle (d)/(dx)[\int\limits^x_a {f(t)} \, dt] = f(x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/jx99l1er32vuxztcveraawq8xidrrhm5rl.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Chain Rule:
![\displaystyle y' = (d)/(dx) \bigg[ \int\limits^(\cos x)_0 {(1)/(1 + t^2)} \, dt \bigg] \cdot (d)/(dx)[\cos x]](https://img.qammunity.org/2017/formulas/mathematics/high-school/b663s3hfwqemcul3zemuxyicz7nqde65fd.png)
- Fundamental Theorem of Calculus 2:
![\displaystyle y' = (1)/(1 + \cos^2 x) \cdot (d)/(dx)[\cos x]](https://img.qammunity.org/2017/formulas/mathematics/high-school/8bkmc721a1zbgposmnfii25movgmfclov6.png)
- Trigonometric Differentiation:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration