230k views
4 votes
Solve y' + 2xy = 2x^3, y(0) = 1.

1 Answer

4 votes
This is an ODE of the form y' + P(x)y = Q(x)
IF =
e^{ \int\limits {P(x)} \, dx }=e^{ \int\limits {2x} \, dx }=e^(x^2)
Multiply through by IF

e^(x^2)y'+2xe^(x^2)y=2x^3e^(x^2) \\ (e^(x^2)y)'=2x^3e^(x^2) \\ \int {(e^(x^2)y)'} \, dx = \int {2x^3e^(x^2)} \, dx \\ e^(x^2)y=x^2e^(x^2)-e^(x^2) + c \\ y=c_1e^(-x^2)+x^2-1
But y(0) = 1

1=c_1e^(-(0)^2)+(0)^2-1 = c_1-1 \\ c_1=1+1=2
Therefore, solution is

y=2e^(-x^2)+x^2-1
User Binabik
by
7.1k points