108k views
7 votes
Resolve the integral from 0 to 6 of xe^x with respect to x.

User Meh
by
3.8k points

1 Answer

10 votes

Answer:


\int\limits^6_0 {xe^(x) } \, dx = 4e^5 +1

Explanation:

Step(i):-

Given


I = \int\limits^6_0 {xe^(x) } \, dx

By using UV formula


\int\limits {UV} \, dx = U\int\limits {v} \, dx - ( \int\limits {(U^(l) } \int\limits {v} \, dx \, )dx

Now , we take

U = x and V = e ˣ

U¹ = 1 and
\int\limits {e^(x) } \, dx = e^(x)

Step(ii):-


\int\limits {xe^x} \, dx = x\int\limits {e^x} \, dx - ( \int\limits {(1) } \int\limits {e^x} \, dx \, )dx

= x e ˣ -
\int\limits {e^x} \, dx

= x e ˣ - e ˣ + C


\int\limits^6_0 {xe^(x) } \, dx =( e^ x ( x -1) )_(0) ^(6)

= e⁵ (5-1) - (e⁰ (0-1)

= 4 e⁵ + 1

Final answer:-


\int\limits^6_0 {xe^(x) } \, dx = 4e^5 +1

User Ximet
by
4.4k points