23.5k views
4 votes
Use the Change of Base Formula to evaluate log3 58. Then convert log3 58 to a logarithm in base 4. Round to the nearest thousandth.

2 Answers

7 votes
Hello,


log_3(58)= (ln(58))/(ln(3))=3,69597450... \\ log_3(58)=log_4(x)\\ (ln(58))/(ln(3)) = (ln(x))/(4)==\textgreater\ x=e^{ (ln(58)*ln(4))/(ln(3))}\\ =167,957104437222249066099...

≈167.96
User APEALED
by
8.0k points
3 votes

Answer:


\log_358\approx 3.696


\Rightarrow (\log_458)/(\log_43)

Explanation:

Given:
\log_358

We need to re-write the log expression with base 4 using base change property of log.

Log property:


\log_ab=(\log_cb)/(\log_ca)

Evaluate:


\Rightarrow \log_358


\Rightarrow (\log58)/(\log3)


\Rightarrow (1.763427)/(0.47712)\approx 3.696

Convert with base 4:


\Rightarrow \log_358


\Rightarrow (\log_458)/(\log_43)

User Shuchi
by
7.7k points