140k views
0 votes
Calculate the following derivative. (Assume a and b are constants.)
d/dx ((ax + b)(abx^7 + 3))

User Antrikshy
by
8.2k points

1 Answer

3 votes

(d)/(dx) (ax+b)(abx^7+3) =

Apply the product rule:
(f *g) ^(') = f^(') *g+f*g {'}


f=ax+b , g=abx^7+3


(d)/(dx) (ax+b)(abx^7+3)+ (d)/(dx) (abx^7+3)(ax+b)


(d)/(dx) (ax+b)=a


(d)/(dx) (b)=0


a+0 = a


(d)/(dx) (abx^7+3) :


(d)/(dx) (3)=0 ; 7 abx^6+0

Simplify:


a(abx^7+3)+7abx^6(ax+b)


= 8a^2bx^7+3a+7ab^2x^6

hope this helps!


User SamIAmHarris
by
8.0k points