130k views
0 votes
Prove the identity secxcscx(tanx+cotx)=2+tan^2x+cot^2x

1. apply the distributive property
2. apply the definitions of secant, cosecant, tangent, and cotangent
3. simplify the expressions
4. apply the definitions of secant and cosecant
5. apply the pythagorean identities
6. simply the expressions

User Keerthee
by
7.4k points

2 Answers

2 votes
sec(x)csc(x)[tan(x) + cot(x)] = 2 + tan²(x) + cot²(x)
sec(x)csc(x)[tan(x)] + sec(x)csc(x)[cot(x)] = 2 + tan²(x) + cot²(x)
sec²(x) + csc²(x) = 2 + tan²(x) + cot²(x)
sec²(x) + csc²(x) = 1 + 1 + tan²(x) + cot²(x)
sec²(x) + csc²(x) = 1 + tan²(x) + 1 + cot²(x)
sec²(x) + csc²(x) = sec²(x) + csc²(x)
User Shubhank
by
8.8k points
7 votes
Hello,


sec(x)= (1)/(cos(x)) \\ cosec(x)= (1)/(sin(x)) \\ sec(x)*cosec(x)*(tg(x)+cotg(x))=(1)/(cos(x))* (1)/(sin(x))*( (sin(x))/(cos(x)) +(cos(x))/(sin(x)))\\ = (sin^2(x)+cos^2(x))/(sin^2x*cos^2x) \\ = (1)/(sin^2x*cos^2x) \\
==============================================================

2+tg^2(x)+cotg^2(x)=2+ (sin^2x)/(cos^2x) + (cos^2x)/(sin^2x) \\ =2+ (sin^4x+cos^4x)/(sin^2x*cos^2x) \\ =(2*sin^2x*cos^2x+sin^4x+cos^4x)/(sin^2x*cos^2x) \\ = ((sin^2x+cos^2x)^2)/(sin^2x*cos^2x)} \\ = (1)/(sin^2x*cos^2x)}
User Alaa Badran
by
7.7k points