167,154 views
34 votes
34 votes
What’s the 13th term i this sequence 32768,16384,8192...

User Jason Sparc
by
2.6k points

1 Answer

6 votes
6 votes

EXPLANATION


\mathrm{A\: geometric\: sequence\: has\: a\: constant\: ratio\: }r\mathrm{\: and\: is\: defined\: by}\: a_n=a_0\cdot r^(n-1)

Compute the ratios of all the adjacent terms: r=(a_n+1)/(a_n)


(16384)/(32768)=(1)/(2),\: \quad (8192)/(16384)=(1)/(2)
\mathrm{The\: ratio\: of\: all\: the\: adjacent\: terms\: is\: the\: same\: and\: equal\: to}
r=(1)/(2)
\mathrm{The\: first\: element\: of\: the\: sequence\: is}
a_1=32768
a_n=a_1\cdot r^(n-1)
\mathrm{Therefore,\: the\: }n\mathrm{th\: term\: is\: computed\: by}\:
r=(1)/(2),\: a_n=32768\mleft((1)/(2)\mright)^(n-1)

Hence, the 13th term would be:


a_(13)=32768((1)/(2))^(13-1)=32768((1)/(2))^(12)=32768\cdot(1)/(4096)=8

The answer is n_13=8

User Paulo Pereira
by
2.6k points