Answer:
Perimeter of the polygon p = 24
Explanation:
Step(i):-
Given the vertices of a polygon are
P(0,4) ,Q( 5,4) ,R( 5,-3) and S(0,-3)
The distance of PQ
![a = PQ = \sqrt{(4-4)^(2) +(5-0)^(2) } = √(25) =5](https://img.qammunity.org/2022/formulas/mathematics/high-school/8zyytw8vdormxrurm3ziu6m0tl4u8xxegi.png)
The distance of QR
![b = Q R= \sqrt{(-3-4)^(2) +(5-5)^(2) } = √(49) =7](https://img.qammunity.org/2022/formulas/mathematics/high-school/dbd7h4ijo0k03t4u2b4fmf4wet38px8pre.png)
The distance of RS
![c = RS = \sqrt{(0-5)^(2) +(-3+3)^(2) } = √(25) =5](https://img.qammunity.org/2022/formulas/mathematics/high-school/918dbjbqkncq9fi8c74zn4nojbo4efm0po.png)
The distance of PS
![d = PS = \sqrt{(0-0)^(2) +(-3-4)^(2) } = √(49) =7](https://img.qammunity.org/2022/formulas/mathematics/high-school/s84l6fp8pr4mzqcdxtpo42oy20rt9ige5c.png)
Step(ii):-
Perimeter of the polygon
= sum of all sides of polygon
p = a+ b+ c+ d
p = 5+7+5+7
p = 24
Final answer:-
Perimeter of the polygon p = 24