209k views
1 vote
Let f(x)=3 ×^2 tan((pi)(x)/2), where -1 <×<1 a) find f^-1 (3) b) find f (f^-1 (5))

User Kingofmit
by
8.0k points

1 Answer

4 votes

f(x) = 3x^(2)tan((\pi x)/(2))

f(x) = 3x^(2)[(1 - cos(\pi x))/(sin(\pi x))]

f(x) = 3x^(2)[csc(\pi x) - cot(\pi x)]

f(x) = 3x^(2)csc(\pi x) - 3x^(2)cot(\pi x)

y = 3x^(2)csc(\pi x) - 3x^(2)cot(\pi x)

x = 3y^(2)csc(\pi x) - 3y^(2)cot(\pi x)


x = 3y^(2)csc(\pi x) - 3y^(2)cot(\pi x)

3 = 3y^(2)csc(\pi x) - 3y^(2)cot(\pi x)

3 = 3y^(2)[csc(\pi x)] - 3y^(2)[cot(\pi x)]

3 = 3y^(2)[csc(\pi x) - cot(\pi x)]

3 = 3y^(2)[(1 - cos(\pi x))/(sin(\pi x))]

3 = 3y^(2)tan((\pi)/(2)y)

1 = y^(2)tan((\pi)/(2)y)

(1)/(tan((\pi)/(2)y)) = y^(2)

cot((\pi)/(2)y) = y^(2)

cot^(-1)[cot((\pi)/(2)y)] = cot^(-1)(y^(2))

(\pi)/(2)y = cot^(-1)(y^(2))

\pi y = 2cot^(-1)(y^(2))

y = (2cot^(-1)(y^(2)))/(\pi)


x = 3y^(2)csc(\pi x) - 3y^(2)cot(\pi x)

5 = 3y^(2)csc(\pi x) - 3y^(2)cot(\pi x)

5 = 3y^(2)[csc(\pi x)] - 3y^(2)[cot(\pi x)]

5 = 3y^(2)[csc(\pi x) - cot(\pi x)]

5 = 3y^(2)[(1 - cos(\pi x))/(sin(\pi x))]

5 = 3y^(2)tan((\pi)/(2)y)

1(2)/(3) = y^(2)tan((\pi)/(2)y)

(5)/(3tan((\pi)/(2)y)) = y^(2)

1(2)/(3)cot((\pi)/(2)y) = y^(2)

\sqrt{1(2)/(3)cot((\pi)/(2)y)} = y
User Nelson Auner
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories