16.1k views
1 vote
the sum of the length, width, and height of a rectangular box is 16 cm; the width is twice the height; and twice the length exceeds the sum of the width and height by 5. find the length, width, and height of the box using matrices. a. length = 10 cm, width = 4 cm, height = 2 cm b. length = 7 cm, width = 6 cm, height = 3 cm c. length = 7 cm, width = 3 cm, height = 6 cm d. length = 10 cm, width = 2 cm, height = 4 cm

User Tyana
by
8.0k points

1 Answer

2 votes
l + w + h = 16 . . . . . (1)
w = 2h
w - 2h = 0 . . . . . (2)
2l = w + h + 5
2l - w - h = 5 . . . . . (3)


\left[\begin{array}{ccc}1&1&1\\0&1&-2\\2&-1&-1\end{array}\right] \left[\begin{array}{c}l&w&h\end{array}\right] = \left[\begin{array}{c}16&0&5\end{array}\right] \ \ -2R_1+R_3 \rightarrow R_3 \\ \left[\begin{array}{ccc}1&1&1\\0&1&-2\\0&-3&-3\end{array}\right] \left[\begin{array}{c}l&w&h\end{array}\right]=\left[\begin{array}{c}16&0&-27\end{array}\right] \ \ (1)/(3) R_3+R_1 \rightarrow R_1

\left[\begin{array}{ccc}1&0&0\\0&1&-2\\0&-3&-3\end{array}\right] \left[\begin{array}{c}l&w&h\end{array}\right]=\left[\begin{array}{c}7&0&-27\end{array}\right] \ \ 3 R_2+R_3 \rightarrow R_3 \\ \left[\begin{array}{ccc}1&0&0\\0&1&-2\\0&0&-9\end{array}\right] \left[\begin{array}{c}l&w&h\end{array}\right]=\left[\begin{array}{c}7&0&-27\end{array}\right] \ \ - (1)/(9) R_3 \rightarrow R_3

\left[\begin{array}{ccc}1&0&0\\0&1&-2\\0&0&1\end{array}\right] \left[\begin{array}{c}l&w&h\end{array}\right]=\left[\begin{array}{c}7&0&3\end{array}\right] \ \ 2R_3+R_2 \rightarrow R_2 \\ \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{c}l&w&h\end{array}\right]=\left[\begin{array}{c}7&6&3\end{array}\right]

Therefore, length = 7 cm; width = 6 cm; height = 3 cm
User Venesectrix
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories