5.3k views
3 votes
1. Find the product: (x + 2)( x – 2)

A. x2 − 8
B. 3x2 − 14x − y
C. x2 − 4
D. x2 − 2

2. Factor Completely: x2 − 36

A. (x + 6)(x – 6)
B. (x + 6)(x + 6)
C. (x – 6)(x − 6)
D. Prime

3. Factor Completely: 4x2 − 81

A. (4x – 9)(x + 9)
B. (2x + 9)(2x + 9)
C. (2x + 9)(2x – 9)
D. (2x – 9)(2x − 9)

4. Factor Completely: x2 + 16

A. (x + 4)(x + 4)
B. (x + 4)(x – 4)
C. Prime
D. (x – 4)(x − 4)

5. Factor Completely: 2x2 − 18

A. Prime
B. 2(x2 − 9)
C. 2(x + 3)(x – 3)
D. 2(x + 3)(x + 3)

6. Factor Completely: 3x2 − 21

A. 3(x2 − 7)
B. 3(x + 7)(x – 7)
C. 3(x + 7)(x – 3)

1 Answer

4 votes

Answer:

Part 1) Option C
x^(2)-4

Part 2) Option A
(x+6)(x-6)

Part 3) Option C
(2x+9)(2x-9)

Part 4) Option C Prime

Part 5) Option C
2(x+3)(x-3)

Part 6) Option A
3(x^(2) -7)

Explanation:

we know that

A difference of square can be factored in the form


a^(2)-b^(2)=(a+b)(a-b)

Part 1) Find the product:
(x + 2)( x - 2)

Applying difference of square


(x + 2)( x - 2)=x^(2)-2^(2)


(x + 2)( x - 2)=x^(2)-4

Part 2) Factor Completely:
x^(2) -36

Applying difference of square


x^(2) -36=(x+6)(x-6)

Part 3) Factor Completely:
4x^(2) -81

Applying difference of square


4x^(2) -81=(2x+9)(2x-9)

Part 4) Factor Completely:
x^(2) +16

Is not a difference of square

Is prime

therefore

Is not possible to factored

Part 5) Factor Completely:
2x^(2) -18


2x^(2) -18=2(x^(2) -9)

Applying difference of square


2(x^(2) -9)=2(x+3)(x-3)

Part 6) Factor Completely:
3x^(2) -21

Is not a difference of square


3x^(2) -21=3(x^(2) -7)

User Neda Homa
by
7.9k points