186k views
3 votes
Solve −3x^2 − 4x − 4 = 0.

User Srodrb
by
8.4k points

2 Answers

6 votes
must use quadratic formula (basically completing the square)

so

for an equation
ax^2+bx+c=0
x=
(-b+/- √(b^2-4ac) )/(2a)

ax^2+bx+c=0
-3x^2-4x-4=0
a=-3
b=-4
c=-4

x=
(-(-4)+/- √((-4)^2-4(-3)(-4)) )/(2(-4))
x=
(4+/- √(16-48) )/(-8)
x=
(4+/- √(-32) )/(-8)
x=
(4+/- (√(-1))(√(32)) )/(-8)
x=
(4+/- (i)(√((4)(4)(2))) )/(-8)
x=
(4+/- (i)(4√(2)) )/(-8)
x=
(4+/- 4i√(2) )/(-8)
x=
(1+/- i√(2) )/(-2)

x=
(1+ i√(2) )/(-2) or
(1- i√(2) )/(-2)
or
x=
(-1- i√(2) )/(2) or
(-1+ i√(2) )/(2)
User Peter Oehlert
by
7.8k points
4 votes

Answer:


x1=\frac{-2(+)2i√(2)} {3}


x2=\frac{-2(-)2i√(2)} {3}

Explanation:

we have


-3x^(2) -4x-4=0

Rewrite (Multiply by
-1 both sides)


3x^(2)+4x+4=0

The formula to solve a quadratic equation of the form
ax^(2) +bx+c=0 is equal to


x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}

in this problem we have


3x^(2)+4x+4=0

so


a=3\\b=4\\c=4

substitute


x=\frac{-4(+/-)\sqrt{4^(2)-4(3)(4)}} {2(3)}



x=\frac{-4(+/-)√(-32)} {6}

remember that


i=√(-1)


x=\frac{-4(+/-)4i√(2)} {6}

Simplify


x=\frac{-2(+/-)2i√(2)} {3}


x1=\frac{-2(+)2i√(2)} {3}


x2=\frac{-2(-)2i√(2)} {3}



User Nene
by
8.7k points