168k views
2 votes
Simplify completely quantity 8 x minus 56 over quantity x squared minus 49 divided by quantity x minus 6 over quantity x squared plus 11 x plus 28

A. 4 open parentheses x plus 4 close parentheses over quantity x minus 3

B. 8 open parentheses x plus 2 close parentheses over quantity x minus 3

C. 8 open parentheses x plus 4 close parentheses over quantity x minus 7

D. 8 open parentheses x plus 4 close parentheses over quantity x minus 6

User Quy
by
8.3k points

2 Answers

3 votes

d .........................................

User Daniel Marques
by
8.2k points
7 votes

Answer:

Option (D) is correct.

8 open parentheses x plus 4 close parentheses over quantity x minus 6

Explanation:

Given : 8 x minus 56 over quantity x squared minus 49 divided by quantity x minus 6 over quantity x squared plus 11 x plus 28

We need to simplify above and choose one correct option out of given options.

First writing each term mathematically,

8 x minus 56 over quantity x squared minus 49 is written as ,
(8x-56)/(x^2-49)

quantity x minus 6 over quantity x squared plus 11 x plus 28 is written as,


(x-6)/(x^2+11x+28)

Combining, we get, 8 x minus 56 over quantity x squared minus 49 divided by quantity x minus 6 over quantity x squared plus 11 x plus 28 as


(8x-56)/(x^2-49)/ (x-6)/(x^2+11x+28)

Solving fraction separately, we get,

Consider first expression,

Applying identity
a^2-b^2=(a+b)(a-b)


\Rightarrow (8x-56)/(x^2-49)=(8x-56)/((x+7)(x-7))

taking 8 common from numerator,


\Rightarrow (8x-56)/((x+7)(x-7))=(8(x-7))/((x+7)(x-7))

On simplifying , we get,


\Rightarrow (8(x-7))/((x+7)(x-7))=(8)/((x+7))

Consider second expression,
(x-6)/(x^2+11x+28)

Solving quadratic using middle term splitting method,


\Rightarrow (x-6)/(x^2+11x+28)=(x-6)/(x^2+7x+4x+28)


\Rightarrow (x-6)/(x^2+7x+4x+28)= (x-6)/((x+4)(x+7))

Combining,


(8x-56)/(x^2-49)/ (x-6)/(x^2+11x+28)


\Rightarrow (8)/((x+7))/ (x-6)/((x+4)(x+7))


\Rightarrow (8)/((x+7))* ((x+4)(x+7))/(x-6)

On solving,


\Rightarrow 8 * ((x+4))/(x-6)

Thus, we obtain (D) is as correct option.

8 open parentheses x plus 4 close parentheses over quantity x minus 6



User Justin Moore
by
8.1k points