Hello,
I am going to try.
A particular solution is y=pt+q ,y'=p, y"=0
t=y"-6y'+9y=0-6p+9(pt+q)==>9pt+9q-6p=t
==>9p=1 ==>p=1/9
and 9q-6p=0==>-6/9+9q=0==>q=2/27
General solution of the homogene equation
y"-6y'+9y=0
Δ=6²-4*9=0
y=6/2=3
Solution is y=(at+b)e^(3t)
Solution: y=(at+b)e^(3t)+t/9+2/27
y(0)=0 ==>0=b+2/27==>b=-2/27
y'(t)=e^(3t)*3*(at+b)+a e^(3t)
y'(0)=0==>0=3(-2/27)+a==>a=2/9
Solution: y=(2/9t-2/27)e^(3t)+t/9 +2/27