234k views
0 votes
Use DeMoivre's Theorem to write the complex number in standard form.

(√2(cos(20°) + isin(20°))^6


A) 4√3 + 4i

B) - 4 + 4√3 i

C) 4 + 4√3 i

D) - 4√3 + 4i

User Shavonne
by
7.9k points

2 Answers

6 votes
Hello,

Answer B

(√2(cos(20°) + isin(20°))^6 =8*(cos 120°+isin120°)
=8*(-1/2+i√3/2)
=4(-1+i√3)



User Tbehunin
by
8.3k points
2 votes

Answer:

Option B is correct


-4+ 4√(3)i

Explanation:

Given the complex number:


(√(2)(\cos(20^(\circ))+i\sin(20^(\circ))))^6

Using D-Moivre's theorem:

if p is the rational; number:


(\cos \theta +i\sin \theta)^p = \cos p\theta +i\sin\theta

then;

Using D-Moivre's theorem:


(√(2))^6(\cos(6 \cdot 20^(\circ))+i\sin(6 \cdot 20^(\circ)))


8((\cos(120^(\circ))+i\sin(120^(\circ)))


8(-(1)/(2)+i (√(3))/(2)) = -4+ 4√(3)i

Therefore, the given complex in the standard form is
-4+ 4√(3)i

User Michael Mason
by
7.4k points