154k views
0 votes
A polynomial function can be written as (x − 1)(x − 4)(x + 7). What are the x-intercepts of the graph of this function?

a (1, 0), (4, 0), (7, 0)
b (−1, 0), (−4, 0), (−7, 0)
c(1, 0), (4, 0), (−7, 0)
d (−1, 0), (−4, 0), (7, 0)

User Jtnire
by
7.9k points

2 Answers

4 votes
(x - 1)(x - 4)(x + 7) = 0 ⇔ x - 1 = 0 or x - 4 = 0 or x + 7 = 0

x = 1 or x = 4 or x = -7

Answer: c. (1; 0); (4; 0); (-7; 0)
User Pablo Herrero
by
8.1k points
5 votes

Answer:

Option c is correct

(1, 0), (4, 0) and (-7, 0)

Explanation:

x-intercepts states that the line cut the x-axis.

Substitute y = 0 and solve for x.

As per the statement:

A polynomial function can be written as (x − 1)(x − 4)(x + 7).

⇒y = (x − 1)(x − 4)(x + 7)

By definition of x-intercept:

Substitute y =0 we have;


(x-1)(x-4)(x+7)=0

By zero product property we have;

x-1 =0 , x-4 = 0 and x+7 =0

⇒x = 1, x = 4 and x = -7

⇒x-intercepts = (1, 0), (4, 0) and (-7, 0)

therefore, the x-intercepts of the graph of this function is, (1, 0), (4, 0) and (-7, 0)

User FreshPow
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories