Answer:
-1.58 and 1.58
Explanation:
We can determine the local minimum value using the derivative test. We can take the derivative of the function g(x):
g'(x)= (d/dx)g(x)
g'(x)

We find the x values at which the function is zero:

Therefore x=0, x=±√5/2
To find the minimum value we substitue our values x=0 or x=-√5/2 or x=√5/2 into g(x)
g(0)=4
g(-√5/2)=-9
g(√5/2)=-9
Therefore the local minimum is -1.58 and 1.58.