25.4k views
2 votes
For the feasibility region shown below, find the maximum value of the function P=2x+3y.

For the feasibility region shown below, find the maximum value of the function P=2x-example-1

2 Answers

3 votes

Let

A--------> the corner point in the graph
(0,0)

B--------> the corner point in the graph
(0,8)

C--------> the corner point in the graph
(6,5)

D--------> the corner point in the graph
(8,0)

we know that

The function P is equal to


P=2x+3y

Step
1

Evaluate the function P in each corner point

point
A(0,0)


x=0\\ y=0\\ PA=2*0+3*0\\ PA=0

point
B(0,8)


x=0\\ y=8\\ PB=2*0+3*8\\ PB=24

point
C(6,5)


x=6\\ y=5\\ PC=2*6+3*5\\ PC=27

point
D(8,0)


x=8\\ y=0\\ PD=2*8+3*0\\ PD=16

the maximum value of P is for the point C


PC=27

therefore

the answer is

The maximum value of the function P is
27

User Lee Olayvar
by
7.4k points
1 vote
Corner points in this graph are: ( 0,0 ) ( 0,8 ) ( 5,6 ) and ( 8, 0 ).
If we plug those values in : P = 2 x + 3 y
P ( 0,0 )= 0
P ( 0,8 ) = 2 * 0 + 3 * 8 = 24
P ( 6 , 5 ) = 2 * 6 + 3 * 5 = 12 + 15 = 27
P ( 8 , 0 ) = 2 * 8 + 3 * 0 = 16
The maximum value is:
P max ( 6 , 5 ) = 27

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories