92.2k views
5 votes
five consecutive terms of an arithmetic sequence have a sum of 40. The product of the middle and the two end terms is 224. Find the terms of the sequence.

1 Answer

3 votes
Let the five terms be: a, a + d, a + 2d, a + 3d, a + 4d, then
a + a + d + a + 2d + a + 3d + a + 4d = 5a + 15d = 40
i.e. a + 3d = 8
Also, (a + 2d)(a + 3d)(a + 4d) = 224
(a + 3d - d)(a + 3d)(a + 3d + d) = 224
(8 - d)(8)(8 + d) = 224
(8 - d)(8 + d) = 224/8 = 28
64 - d^2 = 28
d^2 = 64 - 28 = 36
d = sqrt(36) = 6
But a + 3d = 8
a + 3(6) = 8
a = 8 - 18 = -10

Therefore, the term of the sequence is: -10, -10 + 6, -10 + 2(6), -10 + 3(6), -10 + 4(6)
= -10, -4, -10 + 12, -10 + 18, -10 + 24
= -10, -4, 2, 8, 14

User Huralnyk
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories