Answer:
b. 23.49 m/s
d. 8.55 m/s
d. .87 s
a. 40.8 m
Step-by-step explanation:
The initial along the x-axis is given by the following formula:
![V_(ox) = V_(o)Cos\theta\\\\V_(ox) = (25\ m/s)(Cos\ 20^(o))\\\\V_(ox) = 23.49\ m/s](https://img.qammunity.org/2022/formulas/physics/college/hyb7e1lc6i9q4bwfg3tcaz7hxiov3zj3jj.png)
Hence, the correct option is:
b. 23.49 m/s
The initial along the x-axis is given by the following formula:
![V_(oy) = V_(o)Sin\theta\\V_(oy) = (25\ m/s)(Sin\ 20^(o))\\V_(oy) = 8.55\ m/s](https://img.qammunity.org/2022/formulas/physics/college/i0h27280utnpf7zkxqdf27hesv0fctak7z.png)
Hence, the correct option is:
d. 8.55 m/s
Now, for the time to reach maximum height:
![t = (V_(o)Sin\theta)/(g)\\\\t = ((25\ m/s)Sin\ 20^(o))/(9.8\ m/s^(2))\\\\t = 0.87\ s](https://img.qammunity.org/2022/formulas/physics/college/kclkmsp5cqbdn81fdbtzgsy6m4lacpt860.png)
Hence, the correct option is:
d. .87 s
For the range of projectile:
![R = (V_(o)^(2)\ Sin\ 2\theta)/(g)\\\\R = ((25\ m/s)^(2)(Sin\ 40^(o)))/(9.8\ m/s^(2))\\\\R = 40.9\ m](https://img.qammunity.org/2022/formulas/physics/college/x62aupoxjn6zf2rp8bazpbcym1vs4t322x.png)
Hence, the closest option is:
a. 40.8 m