113k views
3 votes
In a geometric sequence, the ratio between consecutive terms is _____ .

2 Answers

4 votes
Tn = ar^(n-1) n = 1,2,3,4 a = 1st term r = common ratio, T2/T1 = T3/T2 = r
User Edward Touw
by
8.4k points
3 votes

Answer:

In a geometric sequence, the ratio between consecutive terms is _____ .

Explanation:

A geometric progression is a sequence of real numbers in which the next element is obtained by multiplying the previous element by a constant called the reason or factor of the progression.

5, 15, 45, The reason would be to multiply by 3 the previous element.

The answer is: The reason or factor of the progression.

User Nick Roth
by
8.3k points