133k views
15 votes
Solve equation by using the quadratic formula 25x^2 + 35x = -12​

User Magarusu
by
3.3k points

1 Answer

9 votes

Answer:


\displaystyle x=(-4)/(5), (-3)/(5)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtract Property of Equality

Algebra I

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula:
    \displaystyle x=(-b\pm√(b^2-4ac) )/(2a)
  • Multiple Roots

Explanation:

Step 1: Define

25x² + 35x = -12

Step 2: Rewrite

  1. [Addition Property of Equality] Add 12 on both sides: 25x² + 35x + 12 = 0

Step 3: Identify

Identify Variable Parts.

a = 25, b = 35, c = 12

Step 4: Solve for x

  1. Substitute in variables [Quadratic Formula]:
    \displaystyle x=(-35\pm√(35^2-4(25)(12)))/(2(25))
  2. [Numerator - √Radical] Evaluate exponents:
    \displaystyle x=(-35\pm√(1225-4(25)(12)))/(2(25))
  3. [Numerator - √Radical] Multiply:
    \displaystyle x=(-35\pm√(1225-1200))/(2(25))
  4. [Numerator - √Radical] Subtract:
    \displaystyle x=(-35\pm√(25))/(2(25))
  5. [Denominator] Multiply:
    \displaystyle x=(-35\pm√(25))/(50)
  6. [Numerator - √Radical] Evaluate:
    \displaystyle x=(-35\pm5)/(50)
  7. Evaluate:
    \displaystyle x=(-4)/(5), (-3)/(5)
User Pawan Samdani
by
3.5k points