Answer:
![\displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x))/(13) \bigg[ 3sin(3x) + 2cos(3x) \bigg] + C](https://img.qammunity.org/2017/formulas/mathematics/high-school/8zwvch7v2i680dyz13205viju2bv53pn4o.png)
General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Factoring
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/5gyznprxgvpgbqhksqa20f0tupnkb4vxej.png)
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Property [Multiplied Constant]:

Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2017/formulas/mathematics/high-school/9yh593om61l6o2svh84tete09z2621my15.png)
U-Substitution
Integration by Parts:

- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Explanation:
Step 1: Define
Identify

Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u:

- [u] Differentiate [Exponential Differentiation, Chain Rule]:

- Set dv:

- [dv] Trigonometric Integration [U-Substitution]:

Step 3: Integrate Pt. 2
- [Integral] Integration by Parts:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

Step 4: Integrate Pt. 3
Identify variables for integration by parts using LIPET (again).
- Set u:

- [u] Differentiate [Exponential Differentiation, Chain Rule]:

- Set dv:

- [dv] Trigonometric Integration [U-Substitution]:

Step 5: Integrate Pt. 4
- [Integral] Integration by Parts:
![\displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x)sin(3x))/(3) - (2)/(3) \bigg[ (-e^(2x)cos(3x))/(3) - \int {(-2e^(2x)cos(3x))/(3)} \, dx \bigg]](https://img.qammunity.org/2017/formulas/mathematics/high-school/6kzcsnb8yfdapfq1mmp522iuntaio43p78.png)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x)sin(3x))/(3) - (2)/(3) \bigg[ (-e^(2x)cos(3x))/(3) + (2)/(3)\int {e^(2x)cos(3x)} \, dx \bigg]](https://img.qammunity.org/2017/formulas/mathematics/high-school/cjpcn0ooory1ffn7spav9qbgmj93neg6q9.png)
- Simplify:

- Rewrite:

- Isolate:
![\displaystyle \int {e^(2x)cos(3x)} \, dx = (9)/(13) \bigg[ (e^(2x)sin(3x))/(3) + (2e^(2x)cos(3x))/(9) \bigg] + C](https://img.qammunity.org/2017/formulas/mathematics/high-school/1txo3a7gi3ecsxdblztw91h5ri3lyo4abl.png)
- Simplify:

- Factor:
![\displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x))/(13) \bigg[ 3sin(3x)} + 2cos(3x) \bigg] + C](https://img.qammunity.org/2017/formulas/mathematics/high-school/ga1ejhbwzsdhpagcrwoqqbxyvv1j52fukm.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e