133k views
1 vote
Integrate the following: e^(2x) cos3x dx

1 Answer

3 votes

Answer:


\displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x))/(13) \bigg[ 3sin(3x) + 2cos(3x) \bigg] + C

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Factoring

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {e^(2x)cos(3x)} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = e^(2x)
  2. [u] Differentiate [Exponential Differentiation, Chain Rule]:
    \displaystyle du = 2e^(2x) \ dx
  3. Set dv:
    \displaystyle dv = cos(3x) \ dx
  4. [dv] Trigonometric Integration [U-Substitution]:
    \displaystyle v = (sin(3x))/(3)

Step 3: Integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x)sin(3x))/(3) - \int {(2e^(2x)sin(3x))/(3)} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x)sin(3x))/(3) - (2)/(3)\int {e^(2x)sin(3x)} \, dx

Step 4: Integrate Pt. 3

Identify variables for integration by parts using LIPET (again).

  1. Set u:
    \displaystyle u = e^(2x)
  2. [u] Differentiate [Exponential Differentiation, Chain Rule]:
    \displaystyle du = 2e^(2x) \ dx
  3. Set dv:
    \displaystyle dv = sin(3x) \ dx
  4. [dv] Trigonometric Integration [U-Substitution]:
    \displaystyle v = (-cos(3x))/(3)

Step 5: Integrate Pt. 4

  1. [Integral] Integration by Parts:
    \displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x)sin(3x))/(3) - (2)/(3) \bigg[ (-e^(2x)cos(3x))/(3) - \int {(-2e^(2x)cos(3x))/(3)} \, dx \bigg]
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x)sin(3x))/(3) - (2)/(3) \bigg[ (-e^(2x)cos(3x))/(3) + (2)/(3)\int {e^(2x)cos(3x)} \, dx \bigg]
  3. Simplify:
    \displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x)sin(3x))/(3) + (2e^(2x)cos(3x))/(9) - (4)/(9)\int {e^(2x)cos(3x)} \, dx
  4. Rewrite:
    \displaystyle (13)/(9)\int {e^(2x)cos(3x)} \, dx = (e^(2x)sin(3x))/(3) + (2e^(2x)cos(3x))/(9) + C
  5. Isolate:
    \displaystyle \int {e^(2x)cos(3x)} \, dx = (9)/(13) \bigg[ (e^(2x)sin(3x))/(3) + (2e^(2x)cos(3x))/(9) \bigg] + C
  6. Simplify:
    \displaystyle \int {e^(2x)cos(3x)} \, dx = (3e^(2x)sin(3x))/(13) + (2e^(2x)cos(3x))/(13) + C
  7. Factor:
    \displaystyle \int {e^(2x)cos(3x)} \, dx = (e^(2x))/(13) \bigg[ 3sin(3x)} + 2cos(3x) \bigg] + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Sureshvv
by
7.6k points