75,984 views
24 votes
24 votes
1. A standard number cube is tossed. Find P(even or prime).1. 5/62. 1/23. 2/34. 1/6

User Sumeshk
by
2.8k points

1 Answer

14 votes
14 votes

Given: A standard number cube is tossed

To determine: The P(even or prime)

Solution

Step 1: Write the element of the sample space


\begin{gathered} S=\mleft\lbrace1,2,3,4,5,6\mright\rbrace \\ n(S)=6 \end{gathered}

Step 2: Write the element of even


\begin{gathered} evennumber=\mleft\lbrace_{}2,4,6\mright\rbrace \\ n(\text{even)}=3 \end{gathered}

Step 3: Write the elemt of prime


\begin{gathered} prime\text{ number=}\mleft\lbrace2,3,5\mright\rbrace \\ n(prime\text{)}=3 \end{gathered}

Step 4: Write element of even and prime


(\text{odd}\cap even)=\mleft\lbrace2\mright\rbrace

Step 5: Find the P(even or prime)


P_{(\text{even or odd)}}=P(even)+P(odd)-P(odd\cap even)
\begin{gathered} P(\text{even)}=(3)/(6) \\ P(\text{prime)}=(3)/(6) \\ P(\text{even }\cap prime)=(3)/(6)+(3)/(6)-(1)/(6) \\ P(\text{even }\cap prime)=(3+3-1)/(6) \\ P(\text{even }\cap prime)=(5)/(6) \end{gathered}

Hence, the probability of even and odd is 5/6

User TonyParker
by
2.8k points