96.3k views
1 vote
Use the quadratic formula to solve x2 + 5x = –2

2 Answers

3 votes

x^2+5x=-2\\x^2+5x+2=0\\\\a=1;\ b=5;\ c=2\\\Delta=b^2-4ac\\\\\Delta=5^2-4\cdot1\cdot2=25-8=17 \ \textgreater \ 0\\\\then\\x_1=(-b-\sqrt\Delta)/(2a)\ and\ x_2=(-b+\sqrt\Delta)/(2a)\\\\x_1=(-5-√(17))/(2\cdot1)=\boxed{(-5-√(17))/(2)}\\\\x_2=(-5+√(17))/(2\cdot1)=\boxed{(-5+√(17))/(2)}
User Eric Scrivner
by
8.0k points
6 votes
The general formula for a quadratic equation is:

Ax² + Bx + C = 0

The quadratic formula is expressed as:

x1 = -B + √(B²-4AC) / 2A
x2 = -B - √(B²-4AC) / 2A

The equation is:

x2 + 5x = –2
x2 + 5x + 2 = 0

x1 = -5 + √(5²-4(1)(2)) / 2(2) = -0.22
x2 = -5 - √(5²-4(1)(2)) / 2(2) = -2.28

User Brahim Boulkriat
by
7.9k points