189k views
3 votes
Given: X = r + 2, Y = 2r - 9, and Z = r 2 + 17r + 30. Simplify [X · Y - Z] ÷ X.

2 Answers

4 votes
[x.y - z]/x
= y - z/x
= 2r - 9 - (r^2 + 17r + 30)/(r +2)
= 2r - 9 - (r + 2)(r + 15)/(r +2)
= 2r - 9 - (r + 15)
= r - 24
User Tamim Al Manaseer
by
8.4k points
3 votes

Answer:

Given the following:


X = r+2


Y = 2r -9 and


Z = r^2+17r+30

Simplify:
[X.Y-Z] / X

First simplify:
X \cdot Y


X \cdot Y = (r+2) \cdot (2r-9) = r(2r-9)+2(2r-9)

The distributive property says that:


a \cdot (b+c) = a\cdot b+ a\cdot c


r(2r-9)+2(2r-9) = 2r^2-9r+4r-18 = 2r^2-5r-18


X \cdot Y=2r^2-5r-18


X\cdot Y -Z = 2r^2-5r-18 -(r^2+17r+30) =2r^2-5r-18 -r^2-17r- 30

Combine like terms;


X\cdot Y -Z =r^2-22r-48=r^2-24r+2r-48 = r(r-24)+2(r-24) = (r+2)(r-24)

Then;


(X \cdot Y -Z)/(X) = ( (r+2)(r-24))/(r+2) = r-24

Therefore, the simplified form of
[X.Y-Z] / X is r- 24

User Igor Quirino
by
8.0k points