Answer:
16π square units.
Explanation:
Please refer to the graph below.
So, if we draw a representative rectangle, the width of the rectangle will be (x), and the height of the rectangle at each (x) will be given by f(x) - g(x).
By the shell method:
![\displaystyle V=2\pi\int_a^bp(x)h(x)\,dx](https://img.qammunity.org/2022/formulas/mathematics/college/jbcgj9impvz0nog85j05wlzvp0qfssqp4g.png)
We are integrating from x = 0 to x = 2. p(x) is x and h(x) is f(x) - g(x):
![\displaystyle V=2\pi\int_0^2(x)((8-x^2)-(x^2))\,dx](https://img.qammunity.org/2022/formulas/mathematics/college/bpgbija2aqf94h2dlydbeuzjgj674wudc6.png)
Evaluate. Simplify:
![\displaystyle V=2\pi \int_0^2(8x-2x^3)\,dx](https://img.qammunity.org/2022/formulas/mathematics/college/e4gw6w7x74b1zewi2xtcd2b5jgw2o3anqn.png)
Hence:
![\displaystyle V=2\pi\Big(4x^2-(1)/(2)x^4\Big|_(0)^(2)\Big)](https://img.qammunity.org/2022/formulas/mathematics/college/lllk8zbxbt4qt1xkkf9rccr227jbwagjve.png)
Evaluate:
![\displaystyle \begin{aligned} V &= 2 \pi \Big[(4(2)^2-(1)/(2)(2)^4)-(4(0)^2-(1)/(2)(0)^4)\Big]\\ &=2\pi(8) \\&=16\pi\text{ square units} \end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/college/gg8mieaeiaoumsm5bzt2tcjo7mq8dwpzy8.png)